首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101215篇
  免费   17700篇
  国内免费   9930篇
化学   68629篇
晶体学   1133篇
力学   6768篇
综合类   536篇
数学   11864篇
物理学   39915篇
  2024年   100篇
  2023年   2068篇
  2022年   2149篇
  2021年   3236篇
  2020年   4196篇
  2019年   4054篇
  2018年   3430篇
  2017年   3161篇
  2016年   5018篇
  2015年   4713篇
  2014年   5781篇
  2013年   7543篇
  2012年   9250篇
  2011年   9761篇
  2010年   6443篇
  2009年   6158篇
  2008年   6533篇
  2007年   5998篇
  2006年   5484篇
  2005年   4596篇
  2004年   3392篇
  2003年   2625篇
  2002年   2240篇
  2001年   1898篇
  2000年   1650篇
  1999年   1964篇
  1998年   1778篇
  1997年   1657篇
  1996年   1808篇
  1995年   1487篇
  1994年   1448篇
  1993年   1155篇
  1992年   1058篇
  1991年   981篇
  1990年   788篇
  1989年   563篇
  1988年   461篇
  1987年   380篇
  1986年   371篇
  1985年   318篇
  1984年   240篇
  1983年   154篇
  1982年   140篇
  1981年   106篇
  1980年   76篇
  1979年   44篇
  1978年   34篇
  1976年   36篇
  1975年   33篇
  1974年   45篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
Hydrogenation of acetophenone over nano‐Cu/SiO2 catalysts was investigated. The catalysts, prepared by a liquid precipitation method using various precipitating agents, were characterized using low‐temperature nitrogen adsorption, X‐ray diffraction, temperature‐programmed desorption of ammonia, hydrogen temperature‐programmed reduction, transmission electron microscopy and X‐ray photoelectron spectroscopy. It was found that the catalysts prepared by a homogeneous precipitation method had better activity and stability than those prepared by a co‐precipitation method. The catalyst prepared using urea as precipitating agent had well‐dispersed copper species, high surface area and abundant pore structure. The catalytic performance and mechanism of the Cu/SiO2 catalysts were further studied. It was found that the activity and stability of the catalysts could be improved by adjusting the proportion of Cu+/(Cu+ + Cu0). The sample prepared using urea as precipitating agent presented higher activity and selectivity. Also, the catalyst prepared using urea maintained a high catalytic performance while being continuously used for 150 h under the optimal reaction conditions.  相似文献   
92.
New multifunctional materials with both high structural and gas barrier performances are important for a range of applications. Herein we present a one‐step mechanochemical process to prepare molybdenum disulfide (MoS2) nanosheets with hydroxy functional groups that can simultaneously improve mechanical strength, thermal conductivity, and gas permittivity of a polymer composite. By homogeneously incorporating these functionalized MoS2 nanosheets at low loading of less than 1 vol %, a poly(vinyl alcohol) (PVA) polymer exhibits elongation at break of 154%, toughness of 82 MJ/m3, and in‐plane thermal conductivity of 2.31 W/m K. Furthermore, this composite exhibits significant gas barrier performance, reducing the permeability of helium by 95%. Under fire condition, the MoS2 nanosheets form thermally stable char, thus enhancing the material's resistance to fire. Hydrogen bonding has been identified as the main interaction mechanism between the nanofillers and the polymer matrix. The present results suggest that the PVA composite reinforced with 2D layered nanomaterial offers great potentials in packaging and fire retardant applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 406–414  相似文献   
93.
The miktoarm star‐shaped poly(lactic acid) (PLA) copolymer, (PLLA)2‐core‐(PDLA)2, was synthesized via stepwise ring‐opening polymerization of lactide with dibromoneopentyl glycol as the starting material. 1H NMR and FTIR spectroscopy proved the feasibility of synthetic route and the successful preparation of star‐shaped PLA copolymers. The results of FTIR spectroscopy and XRD showed that the stereocomplex structure of the copolymer could be more perfect after solvent dissolution treatment. Effect of chain architectures on crystallization was investigated by studying the nonisothermal and isothermal crystallization of the miktoarm star‐shaped PLA copolymer and other stereocomplexes. Nonisothermal differential scanning calorimetry and polarizing optical microscopy tests indicated that (PLLA)2‐core‐(PDLA)2 exhibited the fastest formation of a stereocomplex in a dynamic test due to its special structure. In isothermal crystallization tests, the copolymer exhibited the fast crystal growth rate and the most perfect crystal morphology. The results reveal that the unique molecular structure has an important influence on the crystallization of the miktoarm star‐shaped PLA copolymer. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 814–826  相似文献   
94.
The ester bond as a universal linker has recently been applied in gene delivery systems owing to its efficient gene release by electrostatic repulsion after its cleavage. However, the ester bond is nonlabile and is difficult to cleave in cells. This work reports a method in which a secondary amine was introduced to the β-position of the ester bond to generate a hydrogen-bond cyclization (HBC) structure that can make the ester bond hydrolysis ultrafast. A series of molecules comprising ultrasensitive esters that can be activated by H2O2 were synthesized, and it was found that those able to form an HBC structure showed complete ester hydrolysis within 5 h in both water and phosphate-buffered saline solution, which was several times faster than other methods reported. Then, a series of amphiphilic poly(amidoamine) dendrimers were constructed, comprising the ultrasensitive ester groups for gene delivery; it was found that they could effectively release genes under quite a low concentration of H2O2 (<200 μm ) and transport them into the nucleus within 2 h in Hela cells with high safety. Their gene transfection efficiencies were higher than that of PEI25k. The results demonstrated that the hydrogen-bond-induced ultrasensitive esters could be powerfully applied to construct gene delivery systems.  相似文献   
95.
Aiming to obtain the more effective pathogen inhibitive ingredients and explore the influence of introducing different heterocyclic units to carvacrol and thymol esters, twenty ester derivatives with different heterocyclic units were synthesized. And the in vitro antifungal activity of title compounds against five plant pathogenic fungi was evaluated by mycelium growth rate method. The results showed that some carvacrol and thymol esters showed good to excellent antifungal activity, and compound 9d (4-bromo-5-isopropyl-2-methylphenyl picolinate) exhibited a broad antifungal spectrum. Preliminary study indicated that the introduction of furan, thiophene and pyridine unit could enhance the antifungal activity of carvacrol and thymol esters against Botrytis cinerea and a bromine atom on the para position of benzene moiety could enhance their antifungal activity.  相似文献   
96.
Journal of Radioanalytical and Nuclear Chemistry - The kinetics of Co ions sorption on CoTreat® was investigated in the 5–40&nbsp;mg/L concentration range at a bulk temperature of...  相似文献   
97.
Journal of Solid State Electrochemistry - Due to their distinctive chemical, electronic, and environmental properties, polypyrrole is used as a blocking barrier for methanol leakage in direct...  相似文献   
98.
A graph G is (k,k)-choosable if the following holds: For any list assignment L which assigns to each vertex v a set L(v) of k real numbers, and assigns to each edge e a set L(e) of k real numbers, there is a total weighting ?:V(G)E(G)R such that ?(z)L(z) for zVE, and eE(u)?(e)+?(u)eE(v)?(e)+?(v) for every edge uv. This paper proves that if G is a connected graph of maximum degree Δ2, then G is (1,Δ+1)-choosable.  相似文献   
99.
Molybdenum carbide (Mo2C) is a promising noble-metal-free electrocatalyst for the hydrogen evolution reaction (HER), due to its structural and electronic merits, such as high conductivity, metallic band states and wide pH applicability. Here, a simple CVD process was developed for synthesis of a Mo2C on carbon cloth (Mo2C@CC) electrode with carbon cloth as carbon source and MoO3 as the Mo precursor. XRD, Raman, XPS and SEM results of Mo2C@CC with different amounts of MoO3 and growth temperatures suggested a two-step synthetic mechanism, and porous Mo2C nanostructures were obtained on carbon cloth with 50 mg MoO3 at 850 °C (Mo2C-850(50)). With the merits of unique porous nanostructures, a low overpotential of 72 mV at current density of 10 mA cm−2 and a small Tafel slope of 52.8 mV dec−1 was achieved for Mo2C-850(50) in 1.0 m KOH. The dual role of carbon cloth as electrode and carbon source resulted into intimate adhesion of Mo2C on carbon cloth, offering fast electron transfer at the interface. Cyclic voltammetry measurements for 5000 cycles revealed that Mo2C@CC had excellent electrochemical stability. This work provides a novel strategy for synthesizing Mo2C and other efficient carbide electrocatalysts for HER and other applications, such as supercapacitors and lithium-ion batteries.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号